If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-50x-100=1500
We move all terms to the left:
x^2-50x-100-(1500)=0
We add all the numbers together, and all the variables
x^2-50x-1600=0
a = 1; b = -50; c = -1600;
Δ = b2-4ac
Δ = -502-4·1·(-1600)
Δ = 8900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8900}=\sqrt{100*89}=\sqrt{100}*\sqrt{89}=10\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-10\sqrt{89}}{2*1}=\frac{50-10\sqrt{89}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+10\sqrt{89}}{2*1}=\frac{50+10\sqrt{89}}{2} $
| -4=10+2/x | | 5x+21+2x=90 | | 0.75^x=81 | | y2-12y-28=0 | | 15x-8=24 | | X+x+2/x+4=66-x | | 3x+2(-3/2(x))=-4 | | 2x-(11x+19)4=-(19+2x)9 | | 6x+2(-3x+3)=6 | | 2/3y+6=-2 | | p-31/3=-21/2 | | 2/3(y+9)=-2 | | 7x-(2x+14)=x+22 | | (1/2)x+6=(5/2)x-2 | | (1/2x)+6=(5/2x)-2 | | 2(x+3=-15 | | 6x-6x+72=48 | | 63=7z | | 6x-24/4x+72=48 | | 6x+8(-3/4x+9)=48 | | 2p=-(p-12) | | 8x+12=192 | | 3x=2x=x | | 10x-20=2x-8 | | -8-3(p+2)=-2(p+7) | | 2.5x=x+9 | | 625x+262.5=250 | | 2x*2-5x+14=0 | | 4u-2/3=-5/3u-6/5 | | 21=3.5x+4 | | (5+y)/4=-3 | | 2+8x+8=4x-6 |